AI技術を活用し、非接触で牛の摂食量、成長(体重)を定量化する「牛の畜産DX」 データに基づく給餌量と出荷時期の決定により、持続可能な畜産を実現する

採択事業者名

トヨタテクニカルディベロップメント株式会社

実装パートナー:株式会社ゆうぼく/実装メンバー:ソフトバンク株式会社

事業概要

目的

肥育牛の給餌量と出荷時期の最適化を目指し、非接触のカメラからAT技術で牛の個体識別、給餌量・残餌量・摂食量、 牛の体重推定が技術検証する。

課題

現状の肥育牛の給餌は人手作業で定量的に把握できず、 餌のやり方も経験に頼る部分が大きく標準化されてい ない。牛の成育状況に応じて出荷タイミングを判断した

いところ、牛をメジャーや体 重計で測ることが困難なため 牛の月齢で出荷時期を判断 している。したがって、牛の 個体差に合わせた出荷が できていない。

解決策

非接触のカメラで、AI技術を活用した牛の個体識別、 給餌量、残餌量、摂食量の把握、体重推定を行い、 "牛の成長の見える化"を実現させる。デジタル上での

牛の成長シミュレーション から最適な給餌量や出荷タイ ミングの定量的な判断を可能 にし、生産性および品質の 向上につなげる。

イメージ図

取り組み内容

教師データを作成するための実データ計測環境の構築および検証 (トヨタテクニカルディベロップメント)

牛舎にカメラ、環境センサ、餌重量計測、体重計を設置し、牛の全体 像や摂食の様子の画像および餌の重量、牛の体重、温度・湿度・照度 の環境のデータを取得し、給餌・摂食・残餌、増体の相関関係を検証 ・AI技術による個体識別・摂食量・体重の推定モデルを作成 (ソフトバンク)

取得した画像から作成した牛の3DCGにより、短期間で機械学習 モデルを生成し、個体識別と摂食量および体重の推定モデルを

・実データ・分析結果に対する生産者観点での見解・助言

検証項目

AI技術を活用し、カメラ画像にて①~③を推定する技術開発の検証 ①牛の個体識別

②餌量(給餌/残餌/摂食)の推定

③牛の体重の推定

取得データ

- ・給餌量、残餌量、摂食量、摂食時間、摂食スピードのデータ
- ・牛の個体識別モデル
- ・摂食量(給館/残餌量)の推定モデル
- 体重の推定モデル

データ活用による考察・示唆

今回作成したAIモデルをほかの牛舎・畜種・餌でも使用できるよう に汎用性を高めることが事業化には必須のため、ほかの畜産農家の 協力のもとデータのバリエーション広げて収集する必要がある。

成果と 今後

成果(含む想定)

AI技術を活用して、非接触のカメラ画像から牛の①個体識別、②摂食量(給餌/残餌量)、③体重の推定モデルを 作成し、定量化できる見込みができた。最適な給餌および出荷時期を提案し、生産力を向上させる。

		実装前	実装後(~今年度)	今後3年
定量面	金額	> -	▶ 技術検証のため 金額 一	▶ 価値検証を経て、 実装後は生産コスト▲5% 生産頭数+5%の効果
	重要指標	 給餌記録をノート、白板、管理アプリ等へ手入力で記録 牛の体重測定が困難なため、 月齢と目視で出荷タイミングを判断 	 牛の個体識別、給餌・残餌・摂食量、体重をカメラで推定することで、 牛の成長の定量的な把握と今後の 成育に合わせた給餌量の指示を可 能にする。 次年度は検証先を3軒に増やし、 データのバリエーションを広げる 給餌量のムダについては、現時点 で把握できていないため、今後検 証を進める 	 実装先は2年後に累計5軒、3年後には累計10軒の実装を目標に汎用性を高める。 出荷時期を月齢29か月→26か月の肥育期間短縮により、餌代および労務費等の生産コスト5%低減と年間生産頭数の5%増加
定性面		 給餌は人手作業のため、人によって餌のやり方が変わってしまい、 餌のやりすぎ、少なすぎが起きてしまっている 	餌のやりすぎ、少なすぎというような給餌エラーの検知ができ、作業の見直しにつながる	 牛の種類別に、どの時期にどの餌を与えるとどのように成長するのか、牛シミュレーションから知見の共有を可能にする 目視での残餌量や出荷時期の判断を軽減する

次年度以降の実装計画/見立て

- 2024年度:事業化にむけた価値検証フェーズに移行
- ・畜産生産現場で効果が得られ、使いやすく手軽に導入できる実装形体を検討していく。
- →簡素・廉価なシステムを畜産生産者と一緒に構築する。
- ・システムデータに牛舎環境、畜種、餌の種類のバリエーションを増やし、牛の成長シミュレーションの汎用性を高める。 →牛の成長シミュレーションには、肥育期間の短縮につながる牛の成長度合いの把握と給餌量の提案、および長期肥 育の生産にも対応した牛の成育状況の見極めに貢献できるソリューションを目指していく。